Numerical Systems


E-mail this post



Remember me (?)



All personal information that you provide here will be governed by the Privacy Policy of Blogger.com. More...



Our society uses numerical system with base 10. Simple explanation why this system is used - simply because people have ten fingers, thus this is the easiest way for us to calculate numbers. If things were gone different, and something had messed up primordial soup -> developing Homo sapiens with eight fingers, it would be more likely we would use octal numeric system in present time. Infinite number of numerical systems exist, but following are most commonly used...




Decimal System:


Base: 10
Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9




Octal System:


Base: 8
Digits: 0, 1, 2, 3, 4, 5, 6, 7
Example: 27 (decimal) = 33 8 (octal)




Hexadecimal (hex) System:


Base: 16
Digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
Example: 27 (decimal) = 1B 16 (hex)




Binary System:


Base: 2
Digits: 0, 1
Example: 27 (decimal) = 11011 2 (binary)


To learn more about numerical systems and their transformation (decimal2binary, dec2hex, dec2octal, hex2octal,...) continue to next lecture.





Technorati Tags:
, , , , , , , , , , ,



0 Responses to “Numerical Systems”

Leave a Reply

      Convert to boldConvert to italicConvert to link

 


German Flag Spanish Flag French Flag Italian Flag Portuguese Flag Japanese Flag Korean Flag Chinese Flag British Flag


This Website is optimized for Firefox. Users browsing with Internet Explorer may encounter problems while viewing pages.


C++ Maniac



Learn C



Additional



#include



Learn Converting



Appendix


Links


Previous posts




Daily Lessons for programming in Visual Studio, using C code.